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Abstract

Apparent emittance of a longitudinal rectangular fin system with an opening angle, accounting fin-to-fin radiation

interaction and also with surfaces that reflect radiation in both diffuse and specular regimes has been evaluated. The

governing equation of the problem is a complicated integro-differential equation. This equation has been solved with

the Gauss–Jacobi orthogonal collocation method, which possesses the quality of exceptional accuracy with a few

numbers of nodes. Finally, the minimum mass design of the fin has been arrived at.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Radiating fins are used in spacecraft and space ve-

hicles to reject waste heat generated from the various

components to the cold space. Since weight reduction is

important for space vehicles, it is necessary to obtain

accurately the heat transfer rates of the radiators to

achieve at optimum design. Gallinan and Berggren [1]

discuss various design criteria associated with radiators

for space vehicle. Analysis of radiating fins has been the

subject of research by a number of investigators. How-

ever, much of the work in this area is limited to single

fins freely radiating to space. Only a few investigators

have considered the optimum design of a radiating fin

array considering mutual interactions between the ra-

diating elements. Sparrow et al. [2] and Sparrow and

Eckert [3] presented the optimum design of radiatively

interacting longitudinal fins considering fin-to-fin inter-

action but for fully diffuse reflecting surfaces [1,2]. The

work by Karlekar and Chao [4] focussed on diffuse

surfaces while analyzing the optimum design of trape-

zoidal fins. Hering [5] and Tien [6] considered the mutual

radiation interaction between conducting plates for fully

specular surfaces. Schnurr et al. [7] also considered only

diffusely reflecting surfaces. Love and Francis [8] pre-

sented an analysis using linearized radiative heat trans-

fer coefficient for the case of fully specularly reflecting

fins. They provided an approximate solution for radia-

tive-convective fins. Chung and Zhang [9,10] using a

variational calculus approach determined the optimum

shape and minimum mass of a thin fin with diffuse re-

flecting surfaces. Krishnaprakas [11] presented the op-

timum design of a diffusely reflecting rectangular plate

fin array extending from a plane wall employing a

nonlinear optimization method. Thermodynamic opti-

mization of tubular space radiators is discussed by Balaji

et al. [12], however without considering the effect of

specular interreflections.

Mass minimization studies of radiative fin arrays are

dealt by only few investigators. Similarly studies of ra-

diation considering specular and/or diffuse effects also

are rather scarce. To our knowledge this is the first paper

to consider them together. It is the purpose of the pre-

sent analysis to determine the temperature profile and

heat flux in a longitudinal rectangular fin system with

an opening angle accounting fin-to-fin radiation inter-

action and also with surfaces that reflect radiation in

both diffuse and specular regimes. The resulting gov-

erning equation, that is a complicated integro-differen-

tial equation, has been solved with the Gauss–Jacobi

orthogonal collocation method (GJOCM), which pos-

sesses the quality of exceptional accuracy with a few

number of nodes. This is the first time in radiation lit-

erature that the GJOCM is used. Finally, the minimum

mass design of the fin has been arrived at.
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2. Mathematical model

Fig. 1 shows a schematic diagram of the configura-

tion of fin array considered in the present analysis, i.e., a

number of longitudinal fins extending from a cylindrical

base with an opening angle between two. The coordinate

system used is depicted in Fig. 2. The base area is so

small that its radiation interaction with the fin is ig-

nored. The following assumptions are made: (1) one

dimensional steady state heat flow (thin fin assumption)

for profile of uniform thickness is considered, (2) gray,

diffusely emitting radiating surfaces, (3) the reflectance

of the surface is composed of a simple sum of the diffuse

and specular components, i.e., q ¼ 1� e ¼ qd þ qs, (4)
no incident loads from any external sources, (5) sur-

roundings at absolute zero temperature, (6) the tem-

perature and radiosity distribution with respect to length

are the same in every fin, i.e., symmetry condition, and

(7) constant thermal conductivity and emittance.

Under steady state conditions the energy conserva-

tion law requires that the net heat flux conducted across

the differential element dx should be equal to the net
radiative flux absorbed by dx from the adjacent fin and
from the same fin in view of self-radiation view factor

[13,14]. The governing differential equation for the

temperature distribution of the fin may be written along

with the boundary conditions as:

d2T1
dx21

¼ 1
kt

J1ðx1Þ
"

� ð1� qsÞ
Z L

x2¼0
J2ðx2ÞdF sdx1–dx2

� ð1� qsÞ
Z L

x0
1
¼0

J1ðx01ÞdF sdx1–dx01

#
ð1Þ

T1ðx1 ¼ 0Þ ¼ Tb; � k2t
dT1ðx1Þ
dx1

����
x1¼L

¼ 2terT 4ðx1 ¼ LÞ

ð2Þ

where the radiosity along fin-1 follows the relation

J1ðx1Þ ¼ erT 41 ðx1Þ þ qd
Z L

x2¼0
J2ðx2ÞdF sdx1–dx2

þ qd
Z L

x0
1
¼0

J1ðx01ÞdF sdx1–dx01 ð3Þ

The specular radiation view factors are evaluated as

dF sdx1–dx2 ¼ dFdx1–dx2 ;c þ ðqsÞ2 dFdx1ð1;2Þ–dx2 ;3c
þ ðqsÞ4 dFdx1ð1;2;1;2Þ–dx2 ;5c þ � � � ð4Þ

dF sdx1–dx01 ¼ qsdFdx1ð2Þ–dx01 ;2c þ ðqsÞ3dFdx1ð2;1;2Þ–dx01 ;4c

þ ðqsÞ5dFdx1ð2;1;2;1;2Þ–dx01 ;6c þ � � � ð5Þ

The direct diffuse view factor between two fins with an

opening angle c is given by the expression [13]

Nomenclature

Ap profile area of the fin (m2)

C GJOCM second derivative weight matrix

D GJOCM first derivative weight matrix

dFdx1–dx2 elemental view factor from dx1 to dx2
dFdn–dn0 elemental view factor from dn to dn

0

J radiosity (W/m2)

J Jacobian matrix

k thermal conductivity of fin material (W/mK)

K kernel matrix, see Eq. (22)

L fin length (m)

Nc conduction–radiation number ¼ kt=rT 3b L
2

q rate of total heat transfer from the fin

(W/m2)

q0 rate of total heat transfer from the fin

(W/m2)

t semi-thickness of the fin (m)

T temperature of the fin (K)

Tb temperature at the fin base (K)

wGL Gauss–Lobatto weight vector

wR Radau weight vector

W Integration weight matrix, see Eq. (23)

x coordinate along the length of the fin mea-

sured from the base (m)

Greek symbols

b dimensionless radiosity ¼ J=rT 4b
c fin opening angle, degree

e emittance of fin surface

eapp apparent emittance

q surface reflectance ¼ 1� e
qs specular reflectance ¼ 1q
qd diffuse reflectance ¼ ð1� 1Þq
r Stefan–Boltzmann constant (5:67� 10�8 W/

m2 K4)

h dimensionless temperature ¼ T=Tb
1 specularity rate ¼ qs=q
n dimensionless coordinate ¼ x=L

Subscripts

1,2 fin number description

b fin base

opt optimum

Abbreviation

GJOCM Gauss–Jacobi orthogonal collocation

method
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dFdx1–dx2 ;c ¼
1

2

x1x2 sin
2 c

ðx21 � 2x1x2 cos c þ x22Þ
3=2
dx2 ð6Þ

The total hemispherical reflectance of the fin surface

is composed as a simple sum of the diffuse and specular

reflectance as

q ¼ qd þ qs ¼ 1� e ð7Þ

A term specularity rate is defined as the ratio of the

specular reflectance to the hemispherical reflectance as

1 ¼ qs

q
ð8Þ

The radiative heat flux per unit area from one surface

of a fin is written as

q0ðx1Þ ¼ J1ðx1Þ � ð1� qsÞ
Z L

x2¼0
J2ðx2ÞdF sdx1–dx2

� ð1� qsÞ
Z L

x0
1
¼0

J1ðx01ÞdF sdx1–dx01 ð9Þ

The total radiative heat loss per unit width from both

the sides of a fin is

q ¼ 2
Z L

x1¼0
q0rðx1Þdx1 ð10Þ

Alternatively, the total heat loss may be written as

q ¼ � k2t
dT1ðx1Þ
dx1

����
x1¼0

ð11Þ

The effectiveness of the fin is expressed through a

term called apparent emittance defined as the ratio of the

actual total radiative heat loss to the ideal heat loss by a

black, isothermal fin.

eapp ¼
q

qideal
ð12Þ

qideal ¼ 2L sin
c
2

� �
rT 4b ð13Þ

Substitution of Eq. (3) in Eq. (1) results in

d2T1
dx21

¼ 1
kt

erT 41 ðx1Þ
"

þ ðqd þ qs � 1Þ
Z L

x2¼0
J2ðx2ÞdF sdx1–dx2

þ ðqd þ qs � 1Þ
Z L

x0
1
¼0

J1ðx01ÞdF sdx1–dx01

#
ð14Þ

The governing differential equation for the tempera-

ture distribution of the fin may be written in terms of

dimensionless variables as:

d2h1
dn21

¼ e
Nc

h41ðn1Þ
"

�
Z 1

n2¼0
b2ðn2ÞdF sdn1–dn2

�
Z 1

n0
1
¼0

b1ðn0
1ÞdF sdn1–dn0

1

#
ð15Þ

where the dimensionless variables are defined as h1 ¼
T1=Tb, n1 ¼ x1=L, n2 ¼ x2=L, b1 ¼ J1=rT 4b , b2 ¼ J2=rT 4b
and Nc ¼ kt=L2rT 3b .
Invoking symmetry conditions h1 ¼ h2 and b1 ¼ b2

and dropping the subscripts for the sake of brevity, Eq.

(15) takes finally the form

d2h

dn2
¼ e

Nc
h4ðnÞ

�
�
Z 1

n0¼0
Kcðn; n0Þbðn0Þdn0

�
ð16Þ

Radiosity variation (Eq. (3)) also is expressed in di-

mensionless form as

Fig. 1. Schematic diagram of fin system.

L

x1,ξ 1

2t

O

γ

x2,ξ2

Fig. 2. Coordinate system.
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b ¼ eh4 þ qd
Z 1

0

Kcðn; n0Þbdn ð17Þ

The boundary conditions, Eq. (2), in dimensionless

form become

hðn ¼ 0Þ ¼ 1; � dhðnÞ
dn

����
n¼1

¼ e
Nc

t
L

h4ðn ¼ 1Þ ð18Þ

The kernel Kc of the integral function required in

Eqs. (16) and (17) is defined as

Kcðn; n0Þ ¼
Xm
r¼1

ðqsÞðr�1Þ 1
2

nn0 sin2 rc

n2 � 2nn0 cos rc þ n02
 �3=2 ;
180

mþ 1 6 c <
180

m
ð19Þ

The variable m determines the total number of

specular reflections possible. Eq. (19) is a representation

of the fact that, no more radiation interaction through

specular interreflections is possible when the opening

angle between the fin and the specular image of itself or

the adjacent fin becomes more than 180�.
The apparent emittance (see Eq. (12)) now takes the

form

eapp ¼
�Nc
sinðc=2Þ

dh
dn

����
n¼0

ð20Þ

We see from Eq. (20) that eapp is a function of four
variables, i.e., eapp ¼ eappðc; e; 1;NcÞ.

3. Numerical scheme

The mathematical model for the conduction–radia-

tion interaction problem in fins has taken the form of a

coupled nonlinear integro-differential system, Eqs. (16)

and (17) together with the boundary conditions, Eq.

(18). Sparrow et al. [2] solved these equations, for the

pure diffuse case, qs ¼ 0, using a finite difference scheme
in which the integral part is solved using the Nystrom

method employing the Simpson�s compound rule of
quadrature. Hering [5] solved the equations for the pure

specular case, qd ¼ 0, by converting the integro-differ-
ential equations, Eq. (16) into a single integral equation,

and then applying an iterative method. Tien [6] also

solved approximately the pure specular case using the

Karman–Pohlhausen technique generally employed for

the solution of boundary layer flow problems.

In the present case, the coupled nonlinear integro-

differential equation, Eq. (16), is solved using the

method of Gauss–Jacobi orthogonal collocation method

(GJOCM) to obtain the temperature distribution in the

fin. GJOCM is a finite difference scheme used to solve

boundary value problems in ordinary differential equa-

tions (BVP-ODEs) in which the nodal points are taken

to be the roots of the Jacobi polynomials that have the

property of orthogonality in the range f0–1g. GJOCM
has been extensively used in solving integro-differential

equations encountered in chemical engineering problems

[15,16]. An important advantage of the method is that,

an exceptionally accurate solution is obtained with fewer

numbers of nodes. In GJOCM, the definite integral term

in the equation is substituted with a suitable Gauss–

Jacobi quadrature rule including one or both of the end

points, depending upon the type of weight function

appearing under the integral term. This is nothing but

the application of the Nystrom method widely used to

solve integral equations. The derivative terms in the

equation are also replaced with appropriate weight

matrices [15,16]. GJOCM is now applied to Eq. (17) to

obtain

b ¼ eh4 þ qdKWb ð21Þ

where b and h are the n-dimensional column vectors
containing respectively the nodal radiosity and temper-

ature values at the n nodal points n ¼ fn1; n2; n3; . . . ;
nngt,

b ¼ fbi; i ¼ 1; ng
t
; h ¼ fhi; i ¼ 1; ngt;

h4 ¼ fh4i ; i ¼ 1; ng
t;

K ¼ ki;j

"
¼

Xm
r¼1

ðqsÞðr�1Þ 1
2

ninj sin
2 rc

ðn2i � 2ninj cos rc þ n2j Þ
3=2

;

i ¼ 1; n; j ¼ 1; n
#

ð22Þ

W ¼ w1;j ¼ wRj ; j ¼ 1; n
wi;j ¼ wGLj ; i ¼ 2; n; j ¼ 1; n

� �
ð23Þ

The n nodal points n ¼ fn1; n2; n3; . . . ; nngt and the
weights wGL ¼ fwGL1 ;wGL2 ;wGL3 ; . . . ;wGLn gt are taken to
be the Gauss–Lobatto quadrature abscissae and

weights. Gauss–Lobatto quadrature is a special case of

the Gauss–Jacobi quadrature in which both the end

points of the integration range are included. An arbi-

trary function f ðnÞ is numerically integrated within the
limits f0–1g using the Gauss–Lobatto scheme as [17]Z 1

0

f ðnÞdn ¼ wGL1 f ð0Þ þ
Xn�1
i¼2

wGLi f ðnGLi Þ þ wGLn f ð1Þ

� nðn� 1Þ322n�1n½ðn� 2Þ!�4

ð2n� 1Þ½ð2n� 1Þ!�3
f ð2n�2ÞðfÞ;

0 < f < 1 ð24Þ

The error term in Eq. (24) demonstrates that, poly-

nomials as high degree as (2n� 3) are exactly integrated
with just n sampling points highlighting the superior
accuracy of the method in comparison with any other

quadrature schemes including the end points. Gauss–

Lobatto sampling points are the roots of the first de-
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rivative of the Legendre polynomial of order (n� 1), i.e.,
P 0
n�1ðnÞ. The first row of the weight matrixW is taken to
be that of a Radau integration scheme, but employing

the same Gauss–Lobatto abscissas skipping the point

n ¼ 0 in order to circumvent the singularity of the kernel
Kc at the origin. In the Radau scheme the integration is

carried out asZ 1

0

f ðnÞdn 

Xn�1
i¼2

wRi f ðn
GL
i Þ þ wRn f ð1Þ; wR1 ¼ 0 ð25Þ

The Radau integration weights wRi are evaluated by
integrating individually the Lagrange interpolant func-

tions passing through the nodal points n2; n3; . . . ; nn

(note that the point n1 ¼ 0 is omitted). Eq. (21) implies
that

b ¼ e½I� qdKW��1h4 ð26Þ

Applying GJOCM to Eq. (16) and using the relation,

Eq. (24), results in

Ch ¼ e
Nc

½h4 � KWb�

¼ e
Nc

½h4 � eKW½I� qdKW��1h4� ð27Þ

where C is the second derivative weight matrix C ¼ ½ci;j�
such that

h00 ¼ d2h

dn2

����
n¼n1

;
d2h

dn2

�����
n¼n2

;
d2h

dn2

������
n¼n3

; . . . ;
d2h

dn2

������
n¼nn

8><
>:

9>=
>;

t

¼ Ch

ð28Þ

D, the first derivative weight matrix that is needed

while handling the boundary condition at n ¼ 1 (Eq.
(18)), is defined as

h0 ¼ dh
dn

����
n¼n1

;
dh
dn

�����
n¼n2

;
dh
dn

������
n¼n3

; . . . ;
dh
dn

������
n¼nn

8><
>:

9>=
>;

t

¼ Dh

ð29Þ

Eq. (27) is rearranged as

Ch � e
Nc

½I� eKW½I� qdKW��1�h4 ¼ fðhÞ ¼ 0 ð30Þ

Evaluation of the derivative weight matrices is ex-

plained by Villadsen and Michelsen [16] and the weights

are tabulated in the treatise by Finlayson [15]. Appli-

cation of GJOCM discretization of the integro-differ-

ential system Eqs. (16) and (17) has finally led to a set of

nonlinear algebraic equations, Eq. (30). Newton-Raph-

son method is employed to solve these equations itera-

tively to obtain the ðk þ 1Þth iterate form the kth iterate
as [17]

hðkþ1Þ ¼ hðkÞ � J�1ðhðkÞÞfðhðkÞÞ ð31Þ

JðhÞ is the Jacobian matrix of the nonlinear system fðhÞ,
and is evaluated as

JðhðkÞÞ ¼ C� 4e
Nc

½I� e KW½I� qdKW��1�hðkÞ3 ð32Þ

The Newton–Raphson iterative process is repeated until

convergence, i.e., when the maximum norm of the rel-

ative difference between two successive iterates is within

a tolerance of 10�5.

Finally the apparent emittance is obtained from the

nodal temperatures as

eapp ¼
�Nc
sinðc=2Þ

dh
dn

����
n¼0

¼ �Nc
sinðc=2Þ

Xn

j¼1
d1;jhj ð33Þ

4. Optimum design

The optimum design of a fin array accomplishes the

maximum overall heat transfer from the fin to the sur-

roundings for a given fin mass or profile area Ap. We
assume that all other parameters e, k and Tb are known.
Therefore, a particular combination of L and tb out of all
possible combinations gives the maximum heat transfer

keeping Ap a constant. This means that, in terms of di-
mensionless quantities, eapp ¼ eappðc; e; 1;NcÞ should be
maximum for a an optimum value of Nc, denoted as N �

c

under specified values of c, e, 1, k, Tb and Ap.
The fin profile area is

Ap ¼ 2tL ð34Þ

The heat loss from the fin is written after some al-

gebraic manipulations, as

q ¼ eappqideal ¼ eapp2L sin
c
2

� �
rT 4b

¼ 41=3A1=3p r2=3T 3b k
1=3 eapp

N 1=3c
¼ const eapp

N 1=3c
ð35Þ

The constrained optimization problem may now be

stated mathematically as

For given c; e; 1; k; Tb and Ap

maximize f ðNcÞ ¼
eoptðc; e; 1;NcÞ

N 1=3c

ð36Þ

The one-dimensional optimization problem, Eq. (36) is

solved using the Powell�s quadratic search algorithm
[18].

5. Results and discussion

The results of the analysis are plotted against that

reported by Sparrow et al. [2] for the case of pure diffuse
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reflection and that reported by Hering [5] for the case of

pure specular reflection, in Fig. 3. Good agreement be-

tween the results has been observed confirming the va-

lidity of the present numerical modelling. Fig. 4 displays

the effect of opening angle on the performance of fin for

the fully specular case. At smaller opening angles fin

performs better. As the specularity rate increases, the fin

performance improves, as demonstrated in Fig. 5. The

effect of specular reflection is more predominant at

smaller opening angles and at intermediate values of

emittances as observed in Fig. 6. Fig. 7 depicts the

variation of apparent emittance at different specularity

levels. Specularity rate has an effect of almost linear

variation on the fin performance as revealed in Fig. 8, at

all emittance values. The results of grid independence

studies are presented in Figs. 9 and 10. It appears that,

at smaller opening angles refined grid is needed. Also,

diffuse surface models need more nodal points than

specular surface models. 40 numbers of grids is sufficient

to obtain accurate results in most cases. Even 5 numbers

of nodes fetches accurate results for an opening angle

40�. Figs. 9 and 10 also display the smooth trend in
which the solution converges as the numerical grid be-

comes finer. No convergence difficulties were experi-

enced with the present numerical scheme. Optimum Nc
values, at which the apparent emittance becomes maxi-

mum for a given profile area, are presented in Fig. 11.

Optimum Nc does not seem to be affected significantly by
whether the surface is diffuse or specular. However,

ε

ε ρ

γ

ε

Fig. 3. Comparison of solutions.

γ

γ

γ

ε ρ ρ

ε

Fig. 4. Effect of parameter Nc.

ε

ρ ρ

ρ ρ

ρ ρ

ε

γ

Fig. 5. Effect of angle between fins.
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γ ε

ρ ρ

ρ ρ

ρ ρ

ε

Fig. 7. Effect of specular reflection.

ε

ε

ε

ε
γ

ε

ζ ρ ρ

Fig. 8. Effect of specularity rate.

γ
γ

γ

ρ ρ ε

ε

Fig. 9. Effect of grid size (diffuse case).

ρ ρ

ρ ρ

γ

γ

γ

ε

ε

Fig. 6. Effect of emittance.
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optimum Nc for specular case is slightly more than dif-
fuse case. This implies that radiation interaction is little

less for the specular reflection case than the diffuse re-

flection case at the optimum profile of the fin.

6. Conclusions

Apparent emittance of a longitudinal rectangular fin

system accounting fin-to-fin radiation interaction and

also with surfaces that reflect radiation in both diffuse

and specular regimes, has been evaluated. The governing

equation, that is a complicated integro-differential

equation, has been solved using GJOCM, which pos-

sesses exceptional accuracy using fewer numbers of

nodes. The optimum dimensions of the fin have been

arrived at. GJOCM can also be efficiently used for fin

systems having different profiles like triangular, para-

bolic etc.
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